Date: \qquad

1. Functions (Linear)

Abby, Breanne and Cate decide to join the same gym.

$$
y=a x+b
$$

The gym charges a onetime membership fee as well as a small fee each time someone visits.

$$
x_{1}
$$

- Abby visits the gym 64 times and pays $\$ 400$
- Breanne pays \$ 425 to visit the gym 84 times
$x=$ visits
$y=\$$.

If Cate visits the gyro $\frac{y_{2}}{x_{2}}$

$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{425-400}{84-64}=\frac{25}{20}=1.25$

$$
y=1.25 x+320
$$

$$
y=1.25(120)+320
$$

$$
y=a x+b
$$

$$
y=1.25 x+b
$$

$$
400=1.25(64)+b
$$

$$
\begin{aligned}
& 400=80+b \\
& -80 \quad-80 \\
& \hline
\end{aligned}
$$

$$
320=b
$$

Answer: Cate would expect to pay: \$ \qquad

2. Functions (Quadratic)

What is the rule for a quadratic function that passes through the origin and point $(5,-3.125)$?

3. Functions (Quadratic)

$$
y=-0.5 x^{2}
$$

If $\mathbf{y}=\mathbf{- 1 1 2 . 5}$, what is the value of ' x '?

$$
\begin{aligned}
& y=a x^{2} \\
& y=-0.5 x^{2} \\
& -\frac{112.5}{-0.5}=\frac{-0.5 x^{2}}{-0.5}
\end{aligned}
$$

$$
\sqrt{225}=\sqrt{\lambda^{2}}
$$

Answer: (_15 , -112.5) .

4. Functions (Exponential)

A viral infection doubles in size every 4 hours.
If the infection starts with 6 viral agents, how many would there be at the end of $\mathbf{2}$ full days?

$y=6 \cdot(2)^{12}$
viral agents at the end of 2 full days

5. Functions (Exponential) \longrightarrow goes down.

The value of a car declines at an average rate of 8.5% per year. $\quad c=100 \%-8.5 \%$
The car was purchased in 2009 for $\$ 35000$.
How much is the car worth in $\mathbf{2 0 1 6}$?
$y=a \cdot c^{x}$
$y=35000 \cdot 0.915^{7}$

$$
\begin{aligned}
& c=91.5 \% \text { (divide so } 100 \text {) } \\
& c=0.915, \\
& a=\underbrace{35}=000 \text { (starting number) } \\
& x=2016-2009=7 \text { years }
\end{aligned}
$$

Answer: The car will be worth \$

6. Functions (Exponential)

Luke decided to go to the bank and invest some money.
c is increasing (growing)
In 2004, he deposited the money in an account with an annual average rate of return of 25\%
In 2007, the value of the account was \$ 2343.75 . _ must be ' y '
How much money did Luke invest, initially? - find ' a '.

$$
c=100 \%+25 \%
$$

$x=2007-2004$

$y=a \cdot c^{x}$

$$
C=125 \%
$$

7. Functions (Step)

It is family day at the local rink and ticket prices vary depending on age.

How much would it cost for a family of 4 to attend, given the following ages:

> (years)

- Mom: age $53 \rightarrow 30 \$$
- Dad: age $55 \longrightarrow 15 \$$
- Kid \#1: age $20 \longrightarrow 30 \$$
- Kid \# 2: age $5 \longrightarrow 20 \$$
$95 \$$ total
Answer: It would cost \$ \qquad

8. Functions (Periodic)

The graph below is a periodic function that shows the height of a ball off the ground as a function of time.

- The ball rises and falls at the same speed.
- When the ball reaches a max height of 150 cm , it stays put for 20 seconds before falling again.

How high above the ground is the ball after 15 minutes?

Periodic Function:

Period = 5 full cycles in 400 seconds,

TIME UNTIL WE STOP: $15 \mathrm{~min} \times 60 \mathrm{sec} / \mathrm{min}=900$ seconds

$$
900 \div 80=11.25 \rightarrow 0.25 \times 80=\begin{gathered}
20 \text { seconds into a new cycle is } \\
\text { where we stop }
\end{gathered}
$$

equation where 20 seconds hits the function:

$$
\begin{aligned}
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{150-0}{30-0}=\frac{150}{30}=5 \quad y & =5 x+0 \\
y & =5(20)+0 \\
y & =100
\end{aligned}
$$

Answer: After 15 minutes, the ball will be \qquad 100 cm oft the ground.
9. Functions (Piecewise)

The graph below represents the outline of a skateboard ramp which corresponds to a piecewise function defined by:

$$
(160,256)
$$

$$
\text { if } 0 \leq x \leq 80
$$

For security purposes, a strip of reflective tape will be placed on the ramp at a height of $\mathbf{1 4 4} \mathbf{~ c m}$.
What is the length of this piece of reflective tape? (Length along the x-axis)

$$
\begin{aligned}
y & =0.04 x^{2} \\
\frac{144}{0.04} & =\frac{0.04 x^{2}}{0 / 04} \\
\sqrt{3600} & =\sqrt{x^{2}}
\end{aligned}
$$

